1 Ref No: REP-IK-400000 Date: 18-MAR-2019 Author: PT, JB. Version: 3 ## **Reconstitution Protocol** # **Coll I Solution** This is a suggested procedure, please adjust according to your experimental needs. #### Protocol aim The aim of this protocol is to provide instructions for neutralizing the Coll I solution. ### Material needed - Coll I solution (20 mL at 5 mg/mL), sterile* - Ice bath - Sterile 10X PBS - Sterile deionized (DI) water - Sterile 1 M NaOH - Sterile 15 mL Falcon tube #### Protocol | Step | Title | Material | Description | | | |------|---|---|---|--|--| | 1 | Cool Coll I | Vial of Coll IIce bath | Place the vial of Coll I stock solution on ice to
keep cool. | | | | 2 | Decide final
volume and
concentration | | Record the desired final volume of the ink (V_{INK}). Record the desired final collagen concentration (C_{Fconc}). C_{Conc} = 5 mg/mL See Table 1 for example calculation. | | | | 3 | Calculations
for
neutralization | | Prepare a neutralization solution for the collagen based on the following calculations: $V_{ColI} = \frac{C_{Fconc} \times V_{INK}}{C_{Conc}}$ | | | Arvid Wallgrens Backe 20 413 46 Gothenburg SWEDEN 100 Franklin St, Boston, MA 02110 USA Med-Pharm Collaboration Building, 46-29 Yoshida-Shimo Kyoto, JAPAN ^{*}The product can be purchased in the CELLINK store at www.cellink.com/store/. | | Neutralization | Note: C _{FConc} and C _{Conc} cannot be the same, otherwise the solution would not be neutralized - Volume of 10X PBS: \[V_{PBS} = \frac{V_{INK}}{10.58} \] Note: The 10X PBS can be changed to 10X medium. - Volume of 1M NaOH: \[V_{NaOH} = V_{ColI} \times 0.0196 \] - Volume of DI water: \[V_{DI} = V_{INK} - V_{ColI} - V_{PBS} - V_{NaOH} \] - Mix following volumes from Step 3; V _{PBS} , V _{NaOH} and V _{DI} in a sterile 15 mL Falcon tube. This is the neutralization solution V _{NS} . \[V_{NS} = V_{DI} + V_{PBS} + V_{NaOH} \] - Cool the neutralization solution on ice for 10 minutes. - Transfer the V _{ColII} to the tube containing the neutralization solution. Act fast at this step, once the VNS has been added, the collagen solution will begin to self-assemble. Gently mix by pipetting up and down for 3 min. - Check the pH and if needed adjust with more NaOH to achieve a pH between 7-8. | |---|----------------|--| | 5 | Casting | Cast structure and warm to 37°C to induce gelation, approximately 10-15 min. See Casting Protocol Coll I for more detailed instruction on casting with cells. | Table 1. Example of Potential Coll 1 Solutions. | V_{INK} | C_{Fconc} | C_{Cconc} | $V_{Coll\ I}$ | V_{NS} | V_{PBS} | V_{NaOH} | V_{DI} | |-----------|-------------|-------------|---------------|----------|-----------|------------|----------| | 1 mL | 1.69 mg/mL | 5 mg/mL | 358 μL | 700 μL | 100 μL | 7 μL | 593 μL | | 2 mL | 1.69 mg/mL | 5 mg/mL | 716 μL | 1.4 mL | 200 μL | 14 μL | 1.186 mL | | 3 mL | 1.69 mg/mL | 5 mg/mL | 1074 μL | 2.1 mL | 300 μL | 21 μL | 1.779 mL |